App config.xml: Unterschied zwischen den Versionen

Aus Planet 3DNow! Distributed Computing Wiki
Zur Navigation springen Zur Suche springen
 
(20 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
Am 11.03.2013 hatte orpheus2k, oder auch sam_spade, diesen [https://forum.planet3dnow.de/index.php?threads/app_config-xml.411493/ Thread] angelegt.<br>
+
Mit einer app_config.xml können Parameter für die Projektberechnung festgelegt werden, die sich über die Projektseite nicht festlegen lassen. Per Suchmaschine lassen sich alle Parameter finden. Für unsere Zwecke geht es um das Einstellen:
<br>
+
* wieviele GPU-WUs von welchem Projekt gleichzeitig, mit wievielen CPU-Kernen, rechnen sollen
Da nur der Threadersteller den Start-Post ändern kann, erscheint ein Übertrag in die DC-Wike sinnvoll, da spätestens zum nächsten BOINC-Wettbewerb diese Informationen gebraucht werden.<br><br>
+
* von CPU-Projekten die Multithreading betreiben
 
+
* der maximalen Anzahl von WUs, eines Projektes/Unterprojektes, die gleichzeitig gerechnet werden sollen
 +
 
Werden diese Informationen im Race-Thread oder Plauderchat bekannt gegeben, gehen sie nach ein paar Seiten wieder unter.<br>
 
Werden diese Informationen im Race-Thread oder Plauderchat bekannt gegeben, gehen sie nach ein paar Seiten wieder unter.<br>
 
<br>
 
<br>
 
Die app_config.xml Datei z. B. mit dem Notepad erstellen und in den jeweiligen BOINC-Projektordner "C:\ProgramData\BOINC\projects\..." abspeichern. Darauf achten, dass die Datei nicht "app_config.xml.'''txt'''" heißt.<br>
 
Die app_config.xml Datei z. B. mit dem Notepad erstellen und in den jeweiligen BOINC-Projektordner "C:\ProgramData\BOINC\projects\..." abspeichern. Darauf achten, dass die Datei nicht "app_config.xml.'''txt'''" heißt.<br>
 
<br>
 
<br>
Analog zu Linux gilt dann /var/lib/boinc-client/projects/...<br>
+
Analog gilt bei Linux dann idR. /var/lib/boinc-client/projects/... oder /var/lib/boinc/projects/...
 
<br>
 
<br>
 
<br>
 
<br>
== '''[[Collatz Conjecture]]''' ==
+
===[[Amicable Numbers]]===
 
  <app_config>
 
  <app_config>
 
   <app>
 
   <app>
       <name>mini_collatz</name>
+
       <name>amicable_10_21</name>
 
       <gpu_versions>
 
       <gpu_versions>
 
           <gpu_usage>1.0</gpu_usage>
 
           <gpu_usage>1.0</gpu_usage>
Zeile 19: Zeile 20:
 
       </gpu_versions>
 
       </gpu_versions>
 
     </app>
 
     </app>
  <app>
+
</app_config>
      <name>solo_collatz</name>
+
 
      <gpu_versions>
+
===[[Asteroids@home]]===
          <gpu_usage>1.0</gpu_usage>
+
Anpassung der maximal gleichzeitig gerechneten CPU-Workunits mittels des Tags max_concurrent, da die Workunits die Recheneinheiten und Caches sehr gut auslasten.
          <cpu_usage>1.0</cpu_usage>
+
  <app_config>
      </gpu_versions>
+
    <app>
 +
        <name>period_search</name>
 +
    <!-- Anzahl Kerne eintragen -->
 +
    <max_concurrent>12</max_concurrent>
 
     </app>
 
     </app>
 +
  </app_config>
 +
===[[Collatz Conjecture]]===
 +
<app_config>
 
   <app>
 
   <app>
       <name>collatz</name>
+
       <name>collatz_sieve</name>
 
       <gpu_versions>
 
       <gpu_versions>
 
           <gpu_usage>1.0</gpu_usage>
 
           <gpu_usage>1.0</gpu_usage>
Zeile 33: Zeile 40:
 
       </gpu_versions>
 
       </gpu_versions>
 
     </app>
 
     </app>
  </app_config><br>
+
  </app_config>
<br>
+
===[[Einstein@Home]]===
== '''[[Einstein@Home]]''' ==
 
<br>
 
 
  <app_config>
 
  <app_config>
 
   <app>
 
   <app>
Zeile 52: Zeile 57:
 
       </gpu_versions>
 
       </gpu_versions>
 
   </app>
 
   </app>
 +
</app_config>
 +
===[[MilkyWay@home]]===
 +
<app_config>
 +
  <app>
 +
      <name>milkyway</name>
 +
      <gpu_versions>
 +
          <gpu_usage>1.0</gpu_usage>
 +
          <cpu_usage>0.05</cpu_usage>
 +
      </gpu_versions>
 +
    </app>
 +
  <app>
 +
      <name>milkyway_separation__modified_fit</name>
 +
      <gpu_versions>
 +
          <gpu_usage>1.0</gpu_usage>
 +
          <cpu_usage>0.05</cpu_usage>
 +
      </gpu_versions>
 +
    </app>
 +
</app_config>
 +
===[[MLC@home]]===
 +
<app_config>
 +
  <app>
 +
      <name>mlds-gpu</name>
 +
      <gpu_versions>
 +
          <gpu_usage>0.5</gpu_usage>
 +
          <cpu_usage>1.0</cpu_usage>
 +
      </gpu_versions>
 +
    </app>
 +
</app_config>
 +
===[[Moo!Wrapper]]===
 +
<app_config>
 +
  <app>
 +
      <name>dnetc</name>
 +
      <gpu_versions>
 +
          <gpu_usage>0.5</gpu_usage>
 +
          <cpu_usage>0.05</cpu_usage>
 +
      </gpu_versions>
 +
    </app>
 +
</app_config>
 +
===[[PrimeGrid]]===
 +
====Für Nvidia und Sieve====
 +
<app_config>
 +
  <app_version>
 +
    <app_name>pps_sr2sieve</app_name>
 +
    <plan_class>cudaPPSsieve</plan_class>
 +
    <cmdline>-m64</cmdline>
 +
    <avg_ncpus>1</avg_ncpus>
 +
    <ngpus>0.5</ngpus>
 +
  </app_version>
 +
</app_config>
 +
 +
====Für AMD und Sieve====
 +
<app_config>
 +
  <app_version>
 +
  <app_name>pps_sr2sieve</app_name>
 +
  <plan_class>openclatiPPSsieve</plan_class>
 +
  <cmdline>-m16 --vecsize=1</cmdline>
 +
  <avg_ncpus>1</avg_ncpus>
 +
  <ngpus>0.5</ngpus>
 +
  </app_version>
 +
</app_config>
 +
====Für alle GPU-Unterprojekte====
 +
<app_config>
 +
  <app>
 +
      <name>pps_sr2sieve</name>
 +
      <gpu_versions>
 +
          <gpu_usage>1.0</gpu_usage>
 +
          <cpu_usage>1.0</cpu_usage>
 +
      </gpu_versions>
 +
    </app>
 +
    <app>
 +
      <name>ap26</name>
 +
      <gpu_versions>
 +
          <gpu_usage>1.0</gpu_usage>
 +
          <cpu_usage>1.0</cpu_usage>
 +
      </gpu_versions>
 +
    </app>
 +
    <app>
 +
      <name>genefer</name>
 +
      <gpu_versions>
 +
          <gpu_usage>1.0</gpu_usage>
 +
          <cpu_usage>0.084</cpu_usage>
 +
      </gpu_versions>
 +
    </app>
 +
    <app>
 +
      <name>genefer_wr</name>
 +
      <gpu_versions>
 +
          <gpu_usage>1.0</gpu_usage>
 +
          <cpu_usage>0.084</cpu_usage>
 +
      </gpu_versions>
 +
    </app>
 +
    <app>
 +
      <name>genefer15</name>
 +
      <gpu_versions>
 +
          <gpu_usage>1.0</gpu_usage>
 +
          <cpu_usage>0.084</cpu_usage>
 +
      </gpu_versions>
 +
    </app>
 +
    <app>
 +
      <name>genefer16</name>
 +
      <gpu_versions>
 +
          <gpu_usage>1.0</gpu_usage>
 +
          <cpu_usage>0.084</cpu_usage>
 +
      </gpu_versions>
 +
    </app>
 +
    <app>
 +
      <name>genefer17low</name>
 +
      <gpu_versions>
 +
          <gpu_usage>1.0</gpu_usage>
 +
          <cpu_usage>0.084</cpu_usage>
 +
      </gpu_versions>
 +
    </app>
 +
    <app>
 +
      <name>genefer17mega</name>
 +
      <gpu_versions>
 +
          <gpu_usage>1.0</gpu_usage>
 +
          <cpu_usage>0.084</cpu_usage>
 +
      </gpu_versions>
 +
    </app>
 +
    <app>
 +
      <name>genefer18</name>
 +
      <gpu_versions>
 +
          <gpu_usage>1.0</gpu_usage>
 +
          <cpu_usage>0.084</cpu_usage>
 +
      </gpu_versions>
 +
    </app>
 +
    <app>
 +
      <name>genefer19</name>
 +
      <gpu_versions>
 +
          <gpu_usage>1.0</gpu_usage>
 +
          <cpu_usage>0.084</cpu_usage>
 +
      </gpu_versions>
 +
    </app>
 +
    <app>
 +
      <name>genefer20</name>
 +
      <gpu_versions>
 +
          <gpu_usage>1.0</gpu_usage>
 +
          <cpu_usage>0.084</cpu_usage>
 +
      </gpu_versions>
 +
    </app>
 +
    <app>
 +
      <name>genefer_extreme</name>
 +
      <gpu_versions>
 +
          <gpu_usage>1.0</gpu_usage>
 +
          <cpu_usage>0.084</cpu_usage>
 +
      </gpu_versions>
 +
    </app>
 +
    <app>
 +
      <name>ww</name>
 +
      <gpu_versions>
 +
          <gpu_usage>1.0</gpu_usage>
 +
          <cpu_usage>0.084</cpu_usage>
 +
      </gpu_versions>
 +
    </app>
 +
</app_config>
 +
===[[Private GFN Server]]===
 +
====Multithreading====
 +
<app_config>
 +
  <app_version>
 +
    <app_name>gfn13_mega</app_name>
 +
    <max_concurrent>1</max_concurrent>
 +
    <report_results_immediately/>
 +
    <cmdline>-t 4</cmdline>
 +
    <avg_ncpus>4</avg_ncpus>
 +
  </app_version>
 +
  <app_version>
 +
    <app_name>llr2</app_name>
 +
    <max_concurrent>1</max_concurrent>
 +
    <report_results_immediately/>
 +
    <cmdline>-t 4</cmdline>
 +
    <avg_ncpus>4</avg_ncpus>
 +
  </app_version>
 +
</app_config>
 +
===[[SRBase]]===
 +
====Multithreading====
 +
<app_config>
 +
  <app>
 +
    <name>srbase</name>
 +
    <max_concurrent>1</max_concurrent>
 +
  </app>
 +
  <app>
 +
    <name>srbase2</name>
 +
    <max_concurrent>1</max_concurrent>
 +
  </app>
 +
  <app>
 +
    <name>srbase3</name>
 +
    <max_concurrent>1</max_concurrent>
 +
  </app>
 +
  <app>
 +
    <name>srbase4</name>
 +
    <max_concurrent>1</max_concurrent>
 +
  </app>
 +
  <app>
 +
    <name>srbase5</name>
 +
    <max_concurrent>1</max_concurrent>
 +
  </app>
 +
  <app>
 +
    <name>srbase6</name>
 +
    <max_concurrent>1</max_concurrent>
 +
  </app>
 +
  <app>
 +
    <name>srbase7</name>
 +
    <max_concurrent>1</max_concurrent>
 +
  </app>
 +
  <app>
 +
    <name>srbase8</name>
 +
    <max_concurrent>1</max_concurrent>
 +
  </app>
 +
  <app>
 +
    <name>srbase9</name>
 +
    <max_concurrent>1</max_concurrent>
 +
  </app>
 +
  <app>
 +
    <name>srbase10</name>
 +
    <max_concurrent>1</max_concurrent>
 +
  </app>
 +
  <app>
 +
    <name>srbase11</name>
 +
    <max_concurrent>1</max_concurrent>
 +
  </app>
 +
  <app>
 +
    <name>srbase12</name>
 +
    <max_concurrent>1</max_concurrent>
 +
  </app>
 +
  <app_version>
 +
    <app_name>srbase</app_name>
 +
    <cmdline>-t4</cmdline>
 +
    <avg_ncpus>4</avg_ncpus>
 +
  </app_version>
 +
  <app_version>
 +
    <app_name>srbase2</app_name>
 +
    <cmdline>-t4</cmdline>
 +
    <avg_ncpus>4</avg_ncpus>
 +
  </app_version>
 +
  <app_version>
 +
    <app_name>srbase3</app_name>
 +
    <cmdline>-t4</cmdline>
 +
    <avg_ncpus>4</avg_ncpus>
 +
  </app_version>
 +
  <app_version>
 +
    <app_name>srbase4</app_name>
 +
    <cmdline>-t4</cmdline>
 +
    <avg_ncpus>4</avg_ncpus>
 +
  </app_version>
 +
  <app_version>
 +
    <app_name>srbase5</app_name>
 +
    <cmdline>-t4</cmdline>
 +
    <avg_ncpus>4</avg_ncpus>
 +
  </app_version>
 +
  <app_version>
 +
    <app_name>srbase6</app_name>
 +
    <cmdline>-t4</cmdline>
 +
    <avg_ncpus>4</avg_ncpus>
 +
  </app_version>
 +
  <app_version>
 +
    <app_name>srbase7</app_name>
 +
    <cmdline>-t4</cmdline>
 +
    <avg_ncpus>4</avg_ncpus>
 +
  </app_version>
 +
  <app_version>
 +
    <app_name>srbase8</app_name>
 +
    <cmdline>-t4</cmdline>
 +
    <avg_ncpus>4</avg_ncpus>
 +
  </app_version>
 +
  <app_version>
 +
    <app_name>srbase9</app_name>
 +
    <cmdline>-t4</cmdline>
 +
    <avg_ncpus>4</avg_ncpus>
 +
  </app_version>
 +
  <app_version>
 +
    <app_name>srbase10</app_name>
 +
    <cmdline>-t4</cmdline>
 +
    <avg_ncpus>4</avg_ncpus>
 +
  </app_version>
 +
  <app_version>
 +
    <app_name>srbase11</app_name>
 +
    <cmdline>-t4</cmdline>
 +
    <avg_ncpus>4</avg_ncpus>
 +
  </app_version>
 +
  <app_version>
 +
    <app_name>srbase12</app_name>
 +
    <cmdline>-t4</cmdline>
 +
    <avg_ncpus>4</avg_ncpus>
 +
  </app_version>
 +
</app_config>
 +
===[[YAFU]]===
 +
<app_config>
 +
  <app>
 +
      <name>yafu-64t</name>
 +
  <max_concurrent>128</max_concurrent>
 +
  </app>
 +
  <app>
 +
      <name>yafu-128t</name>
 +
  <max_concurrent>128</max_concurrent>
 +
  </app>
 +
</app_config>
 +
===[[Yoyo]]===
 +
<app_config>
 +
  <app>
 +
    <name>ecmP2</name>
 +
      <max_concurrent>1</max_concurrent>
 +
      <fraction_done_exact>0</fraction_done_exact>
 +
      <report_results_immediately>0</report_results_immediately>
 +
  </app>
 +
  <app_version>
 +
    <app_name>ecmP2</app_name>
 +
        <cmdline></cmdline>
 +
        <avg_ncpus>1.000000</avg_ncpus>
 +
    </app_version>
 +
  <app>
 +
      <name>ecm</name>
 +
        <max_concurrent>7</max_concurrent>
 +
        <fraction_done_exact>0</fraction_done_exact>
 +
        <report_results_immediately>0</report_results_immediately>
 +
  </app>
 +
  <app_version>
 +
    <app_name>ecm</app_name>
 +
        <cmdline></cmdline>
 +
        <avg_ncpus>1.000000</avg_ncpus>
 +
  </app_version>
 +
    <project_max_concurrent>8</project_max_concurrent>
 +
    <report_results_immediately>0</report_results_immediately>
 
  </app_config>
 
  </app_config>

Aktuelle Version vom 6. Mai 2023, 07:15 Uhr

Mit einer app_config.xml können Parameter für die Projektberechnung festgelegt werden, die sich über die Projektseite nicht festlegen lassen. Per Suchmaschine lassen sich alle Parameter finden. Für unsere Zwecke geht es um das Einstellen:

  • wieviele GPU-WUs von welchem Projekt gleichzeitig, mit wievielen CPU-Kernen, rechnen sollen
  • von CPU-Projekten die Multithreading betreiben
  • der maximalen Anzahl von WUs, eines Projektes/Unterprojektes, die gleichzeitig gerechnet werden sollen

Werden diese Informationen im Race-Thread oder Plauderchat bekannt gegeben, gehen sie nach ein paar Seiten wieder unter.

Die app_config.xml Datei z. B. mit dem Notepad erstellen und in den jeweiligen BOINC-Projektordner "C:\ProgramData\BOINC\projects\..." abspeichern. Darauf achten, dass die Datei nicht "app_config.xml.txt" heißt.

Analog gilt bei Linux dann idR. /var/lib/boinc-client/projects/... oder /var/lib/boinc/projects/...

Amicable Numbers

<app_config>
  <app>
     <name>amicable_10_21</name>
     <gpu_versions>
         <gpu_usage>1.0</gpu_usage>
         <cpu_usage>1.0</cpu_usage>
     </gpu_versions>
   </app>
</app_config>

Asteroids@home

Anpassung der maximal gleichzeitig gerechneten CPU-Workunits mittels des Tags max_concurrent, da die Workunits die Recheneinheiten und Caches sehr gut auslasten.

 <app_config>
   <app>
       <name>period_search</name>
   <max_concurrent>12</max_concurrent>
   </app>
 </app_config>

Collatz Conjecture

<app_config>
  <app>
     <name>collatz_sieve</name>
     <gpu_versions>
         <gpu_usage>1.0</gpu_usage>
         <cpu_usage>1.0</cpu_usage>
     </gpu_versions>
   </app>
</app_config>

Einstein@Home

<app_config>
 <app>
   <name>hsgamma_FGRPB1G</name>
     <gpu_versions>
     <gpu_usage>0.333</gpu_usage>
     <cpu_usage>1.0</cpu_usage>
     </gpu_versions>
 </app>
 <app>
   <name>einstein_O2MDF</name>
      <gpu_versions>
      <gpu_usage>0.2</gpu_usage>
      <cpu_usage>1.0</cpu_usage>
      </gpu_versions>
 </app>
</app_config>

MilkyWay@home

<app_config>
  <app>
     <name>milkyway</name>
     <gpu_versions>
         <gpu_usage>1.0</gpu_usage>
         <cpu_usage>0.05</cpu_usage>
     </gpu_versions>
   </app>
  <app>
     <name>milkyway_separation__modified_fit</name>
     <gpu_versions>
         <gpu_usage>1.0</gpu_usage>
         <cpu_usage>0.05</cpu_usage>
     </gpu_versions>
   </app>
</app_config>

MLC@home

<app_config>
  <app>
     <name>mlds-gpu</name>
     <gpu_versions>
         <gpu_usage>0.5</gpu_usage>
         <cpu_usage>1.0</cpu_usage>
     </gpu_versions>
   </app>
</app_config>

Moo!Wrapper

<app_config>
  <app>
     <name>dnetc</name>
     <gpu_versions>
         <gpu_usage>0.5</gpu_usage>
         <cpu_usage>0.05</cpu_usage>
     </gpu_versions>
   </app>
</app_config>

PrimeGrid

Für Nvidia und Sieve

<app_config>
  <app_version>
    <app_name>pps_sr2sieve</app_name>
    <plan_class>cudaPPSsieve</plan_class>
    <cmdline>-m64</cmdline>
    <avg_ncpus>1</avg_ncpus>
    <ngpus>0.5</ngpus>
  </app_version>
</app_config>

Für AMD und Sieve

<app_config>
 <app_version>
  <app_name>pps_sr2sieve</app_name>
  <plan_class>openclatiPPSsieve</plan_class>
  <cmdline>-m16 --vecsize=1</cmdline>
  <avg_ncpus>1</avg_ncpus>
  <ngpus>0.5</ngpus>
 </app_version>
</app_config>

Für alle GPU-Unterprojekte

<app_config>
  <app>
     <name>pps_sr2sieve</name>
     <gpu_versions>
         <gpu_usage>1.0</gpu_usage>
         <cpu_usage>1.0</cpu_usage>
     </gpu_versions>
   </app>
   <app>
     <name>ap26</name>
     <gpu_versions>
         <gpu_usage>1.0</gpu_usage>
         <cpu_usage>1.0</cpu_usage>
     </gpu_versions>
   </app>
   <app>
     <name>genefer</name>
     <gpu_versions>
         <gpu_usage>1.0</gpu_usage>
         <cpu_usage>0.084</cpu_usage>
     </gpu_versions>
   </app>
   <app>
     <name>genefer_wr</name>
     <gpu_versions>
         <gpu_usage>1.0</gpu_usage>
         <cpu_usage>0.084</cpu_usage>
     </gpu_versions>
   </app>
   <app>
     <name>genefer15</name>
     <gpu_versions>
         <gpu_usage>1.0</gpu_usage>
         <cpu_usage>0.084</cpu_usage>
     </gpu_versions>
   </app>
   <app>
     <name>genefer16</name>
     <gpu_versions>
         <gpu_usage>1.0</gpu_usage>
         <cpu_usage>0.084</cpu_usage>
     </gpu_versions>
   </app>
   <app>
     <name>genefer17low</name>
     <gpu_versions>
         <gpu_usage>1.0</gpu_usage>
         <cpu_usage>0.084</cpu_usage>
     </gpu_versions>
   </app>
   <app>
     <name>genefer17mega</name>
     <gpu_versions>
         <gpu_usage>1.0</gpu_usage>
         <cpu_usage>0.084</cpu_usage>
     </gpu_versions>
   </app>
   <app>
     <name>genefer18</name>
     <gpu_versions>
         <gpu_usage>1.0</gpu_usage>
         <cpu_usage>0.084</cpu_usage>
     </gpu_versions>
   </app>
   <app>
     <name>genefer19</name>
     <gpu_versions>
         <gpu_usage>1.0</gpu_usage>
         <cpu_usage>0.084</cpu_usage>
     </gpu_versions>
   </app>
   <app>
     <name>genefer20</name>
     <gpu_versions>
         <gpu_usage>1.0</gpu_usage>
         <cpu_usage>0.084</cpu_usage>
     </gpu_versions>
   </app>
   <app>
     <name>genefer_extreme</name>
     <gpu_versions>
         <gpu_usage>1.0</gpu_usage>
         <cpu_usage>0.084</cpu_usage>
     </gpu_versions>
   </app>
   <app>
     <name>ww</name>
     <gpu_versions>
         <gpu_usage>1.0</gpu_usage>
         <cpu_usage>0.084</cpu_usage>
     </gpu_versions>
   </app>
</app_config>

Private GFN Server

Multithreading

<app_config>
  <app_version>
    <app_name>gfn13_mega</app_name>
    <max_concurrent>1</max_concurrent>
    <report_results_immediately/>
    <cmdline>-t 4</cmdline>
    <avg_ncpus>4</avg_ncpus>
  </app_version>
  <app_version>
    <app_name>llr2</app_name>
    <max_concurrent>1</max_concurrent>
    <report_results_immediately/>
    <cmdline>-t 4</cmdline>
    <avg_ncpus>4</avg_ncpus>
  </app_version>
</app_config>

SRBase

Multithreading

<app_config>
  <app>
    <name>srbase</name>
    <max_concurrent>1</max_concurrent>
  </app>
  <app>
   <name>srbase2</name>
   <max_concurrent>1</max_concurrent>
 </app>
 <app>
   <name>srbase3</name>
   <max_concurrent>1</max_concurrent>
 </app>
 <app>
   <name>srbase4</name>
   <max_concurrent>1</max_concurrent>
 </app>
 <app>
   <name>srbase5</name>
   <max_concurrent>1</max_concurrent>
 </app>
 <app>
   <name>srbase6</name>
   <max_concurrent>1</max_concurrent>
 </app>
 <app>
   <name>srbase7</name>
   <max_concurrent>1</max_concurrent>
 </app>
 <app>
   <name>srbase8</name>
   <max_concurrent>1</max_concurrent>
 </app>
 <app>
   <name>srbase9</name>
   <max_concurrent>1</max_concurrent>
 </app>
 <app>
   <name>srbase10</name>
   <max_concurrent>1</max_concurrent>
 </app>
 <app>
   <name>srbase11</name>
   <max_concurrent>1</max_concurrent>
 </app>
 <app>
   <name>srbase12</name>
   <max_concurrent>1</max_concurrent>
 </app>
 <app_version>
   <app_name>srbase</app_name>
   <cmdline>-t4</cmdline>
   <avg_ncpus>4</avg_ncpus>
 </app_version>
 <app_version>
   <app_name>srbase2</app_name>
   <cmdline>-t4</cmdline>
   <avg_ncpus>4</avg_ncpus>
 </app_version>
 <app_version>
   <app_name>srbase3</app_name>
   <cmdline>-t4</cmdline>
   <avg_ncpus>4</avg_ncpus>
 </app_version>
 <app_version>
   <app_name>srbase4</app_name>
   <cmdline>-t4</cmdline>
   <avg_ncpus>4</avg_ncpus>
 </app_version>
 <app_version>
   <app_name>srbase5</app_name>
   <cmdline>-t4</cmdline>
   <avg_ncpus>4</avg_ncpus>
 </app_version>
 <app_version>
   <app_name>srbase6</app_name>
   <cmdline>-t4</cmdline>
   <avg_ncpus>4</avg_ncpus>
 </app_version>
 <app_version>
   <app_name>srbase7</app_name>
   <cmdline>-t4</cmdline>
   <avg_ncpus>4</avg_ncpus>
 </app_version>
 <app_version>
   <app_name>srbase8</app_name>
   <cmdline>-t4</cmdline>
   <avg_ncpus>4</avg_ncpus>
 </app_version>
 <app_version>
   <app_name>srbase9</app_name>
   <cmdline>-t4</cmdline>
   <avg_ncpus>4</avg_ncpus>
 </app_version>
 <app_version>
   <app_name>srbase10</app_name>
   <cmdline>-t4</cmdline>
   <avg_ncpus>4</avg_ncpus>
 </app_version>
 <app_version>
   <app_name>srbase11</app_name>
   <cmdline>-t4</cmdline>
   <avg_ncpus>4</avg_ncpus>
 </app_version>
 <app_version>
   <app_name>srbase12</app_name>
   <cmdline>-t4</cmdline>
   <avg_ncpus>4</avg_ncpus>
 </app_version>
</app_config>

YAFU

<app_config>
  <app>
      <name>yafu-64t</name>
  <max_concurrent>128</max_concurrent>
  </app>
  <app>
      <name>yafu-128t</name>
  <max_concurrent>128</max_concurrent>
  </app>
</app_config>

Yoyo

<app_config>
 <app>
   <name>ecmP2</name>
     <max_concurrent>1</max_concurrent>
     <fraction_done_exact>0</fraction_done_exact>
     <report_results_immediately>0</report_results_immediately>
 </app>
 <app_version>
    <app_name>ecmP2</app_name>
        <cmdline></cmdline>
        <avg_ncpus>1.000000</avg_ncpus>
    </app_version>
 <app>
     <name>ecm</name>
        <max_concurrent>7</max_concurrent>
        <fraction_done_exact>0</fraction_done_exact>
        <report_results_immediately>0</report_results_immediately>
 </app>
 <app_version>
   <app_name>ecm</app_name>
       <cmdline></cmdline>
       <avg_ncpus>1.000000</avg_ncpus>
 </app_version>
    <project_max_concurrent>8</project_max_concurrent>
    <report_results_immediately>0</report_results_immediately>
</app_config>